Novel Enantioselective Photocatalysis by Chiral, Helical Ruthenium(II) Complexes

Katsutoshi Ohkubo,* Taisuke Hamada and Hitoshi Ishida

Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860, Japan

The enantioselective photoreduction of the helical substrates of *rac*-[Co(acac)₃] (acac⁻ = acetylacetonato) and *rac*-[Co(edta)]⁻ (edta⁴⁻ = ethylenediaminetetraacetato) with the newly synthesized helical photocatalysts Δ - (or *rac*)-[Ru[Menbpy]₃²⁺ {Menbpy = 4,4'-bis[(1*R*,2*S*,5*R*)-(-)-menthoxycarbonyl]-2,2'-bipyridine}, and Λ - (or Δ)-[Ru{(*S* or *R*)-PhEtbpy]₃]²⁺ {(*S* or *R*)-PhEtbpy = 4,4'-bis[(*S*)-(-) or (*R*)-(+)-1-phenylethylaminocarbonyl]-2,2'-bipyridine} was realized in the helical-shape recognition reaction with a maximum enantiomer rate ratio (k^{Δ}/k^{Λ}) of 14.7 in 90% v/v EtOH–H₂O at 25 °C.

The chemistry of molecular recognition has recently received considerable attention; molecular recognition in catalytic reactions is usually expected to occur as a result of efficient interaction (especially multipoint interactions) between chiral catalysts and enantiomeric (or prochiral) substrates. Thus, non-bonding long-range interactions between chiral photo-catalysts and substrates would not result in efficient enantio-selectivity or asymmetric induction. Porter *et al.*^{1,2} studied the enantioselective reduction of *rac*-[Co(acac)₃] (acac⁻ = acetyl-acetonato) catalysed by the photoactivated Δ -[Ru(bpy)₃]²⁺ (bpy = 2,2'-bipyridine). This investigation, however, did not result in efficient photocatalysis by Δ -[Ru(bpy)₃]²⁺, because

 Δ -[Ru(bpy)₃]²⁺ racemizes easily, leading to low enantioselectivity (enantiomer rate ratio $k^{\Lambda}/k^{\Delta} = 1.08$). We report here novel enantioselective photocatalysis by helical ruthenium(II) complexes, Δ -[Ru(Menbpy)₃]²⁺ **1a** or *rac*-[Ru(Menbpy)₃]²⁺ **1a-b** {Menbpy = 4,4'-bis[(1R,2S,5R)-(-)-menthoxycarbony]-2,2'-bipyridine}, Λ -[Ru(S-PhEtbpy)₃]²⁺ **2a** or Δ -[Ru(R-PhEtbpy)₃]²⁺ **2b** {(S) or R)-PhEtbpy = 4,4'-bis[(S)-(-) or (R)-(+)-1-phenylethylaminocarbonyl]-2,2'-bipyridine}, in the reduction of *rac*-[Co(acac)₃] **3** (**3a** = Δ , **3b** = Λ ; acac⁻ = acetylacetonato) or *rac*-[Co(edta)]⁻ **4** (**4a** = Δ , **4b** = Λ ; edta⁴⁻ = ethylenediaminetetraacetato).

The ruthenium(II) photocatalysts were prepared by the

method described in our previous reports,^{3,4} and the helical catalysts **1a**, **2a** and **2b**) were obtained by resolution of their racemates using silica gel column chromatography (eluent: CHCl₃-MeOH).

The characteristic molecular symmetries of **1a-b** and **2a-b** are reflected in their CD spectra (in EtOH) shown in Fig. 1; **1a** and **2b** have the same Δ -symmetry as Δ -[Ru(by)₃]²⁺, while **2a** shows Λ -symmetry, and **1a-b** {racemate of **1a** and Λ -[Ru(Menby)₃]²⁺ **1b**} indicates the predominance of the Δ -symmetry of **1a** rather than the Λ -symmetry of **1b**. From the energy minimized conformations [determined by molecular mechanics (MM2) calculations] of their chiral ligands,⁵ **1a** and **2b** were found to adopt $M(C_3)$ helicity while **1b** and **2a** have $P(C_3)$ helicity, where $P(C_3)$ or $M(C_3)$ indicates a plus (clockwise) or minus (counterclockwise) helical arrangement along the C_3 axis, respectively.

The helical complexes of **1a–b** and **2a–b**, which have the metal to ligand charge transfer absorption at λ_{max} (ϵ) = 466 nm (27200 mol⁻¹ dm⁻³ cm⁻¹) and 464 nm (21200 mol⁻¹ dm³ cm⁻¹) in EtOH, respectively, were more stable to light and had longer lifetimes (τ) than Δ -[Ru(bpy)₃]²⁺; the observed values of τ (1550 ns for **1a–b** and 1800 ns for **2a–b** in EtOH at 25 °C) and quantum yield of photoracemization ($\phi_{rac} = 4.0 \times 10^{-6}$ for **1a** and 7.6 × 10⁻⁶ for **2a** or **b** in EtOH at 25 °C) were respectively much larger and smaller than those ($\tau = 790$ ns in H₂O at 25 °C⁶ and $\phi_{rac} = 2.88 \times 10^{-4}$ in EtOH at 25 °C²)

for Δ -[Ru(bpy)₃]²⁺. The excited-state oxidation potentials $(E^{3+/2+*} \text{ in Table 1})$ determined for **1a-b** and **2a-b** by using the Rehm-Weller relation⁷ were lower than that of Δ -[Ru(bpy)₃]²⁺ because of the esterification or amidation of the bipyridine ligands.⁸

The photoreduction of 2.4 mmol dm⁻³ racemic 3 or 4 $(E^{3+/2+} = -0.34^{9} \text{ or } 0.13^{10} \text{ V vs. SCE}$ for 3 or 4, respectively) by 32 µmol dm⁻³ **1a-b** or **2a-b** under photoirradiation ($\lambda > 400 \text{ nm}$, 500 W xenon lamp) in deaerated aqueous EtOH solution at 25 °C produced only Co(acac)₂(H₂O)₂-acac⁻ or [Co(edta)]²⁻ as reduction product and proceeded catalytically and enantioselectively (Fig. 2); in this reaction, the EtOH solvent contributes to the photocatalysis of **1a-b** or **2a-b** as a reductant, as shown in Scheme 1.

The reaction rates were followed by monitoring spectrophotometrically the amounts of **3a-b** or **4a-b** consumed,[†] and were found to obey a pseudo-first-order rate law with different pseudo-first-order rate constants (k^{Δ} and k^{Λ}) during the initial

⁺ The total concentration {[**3a** (or **4a**)] + [**3b** (or **4b**)]} and the concentration difference {[**3a** (or **4a**)] - [**3b** (or **4b**)]} were determined respectively by using $\varepsilon = 133$ (347) mol⁻¹ dm³ cm⁻¹ at $\lambda_{max} = 595$ (533) nm for **3a-b** (**4a-b**) and $\Delta \varepsilon = -8.11$ (**3a**) and +8.11 (**3b**) mol⁻¹ dm³ cm⁻¹ at $\lambda_{CD} = 574$ nm and +1.73 (**4a**) and -1.73 (**4b**) at $\lambda_{CD} = 585$ nm.

Table 1 Photoreduction of the helical 3 or 4 racemates with the helical photocatalysts 1a-b and $2a-b^a$

Photocatalyst	Substrate	E ^{3/2+*/} V vs. SCE ^b	Reaction					Quenching			
			10 ² φ _{react}	$k^{\Delta}/$ 10 ⁻⁶ s ⁻¹	k^/ 10 ^{−6} s ^{−1}	k∆/k^	Prevailed helicity	$k_{q}^{\Delta/}$ $10^{8} s^{-1}$	$k_{q}^{\Lambda/}$ $10^{8} \mathrm{s}^{-1}$	k _q ∆/ k _q ∧	Prevailed helicity
M(C ₃)-1a	3	-0.45	1.3	74.0 239°	5.0 28.0 ^c	14.7 8.65 ^c	$P(C_3)$ $P(C_3)$	1.98	1.49	1.28	$P(C_3)$
1a-b [= $M(C_3)$ -1a + $P(C_3)$ -1b] $P(C_3)$ -2a $M(C_3)$ -2b $P(C_3)$ - Δ -[Ru(bpy) ₃] ²⁺	3 4 3 3 3	-0.45 -0.45 -0.60 -0.60 -0.81f	1.8 0.02 ^d 0.84 0.15 ^e 4 ^g	117 0.55 ^d 31.5 4.13 ^e	67 0.29 ^d 48 2.66 ^e	1.67 1.90 ^d 1/1.51 1.54 ^e 1/1.08 ^h	$P(C_3)$ $P(C_3)$ $M(C_3)$ $P(C_3)$ $M(C_3)$	$1.57 \\ 156^d \\ 1.44 \\ 1.69$	$1.41 \\ 110^d \\ 1.67 \\ 1.57$	$1.14 \\ 1.42^{d} \\ 1/1.16 \\ 1.08 \\ 1/1.03^{g}$	$P(C_3)$ $P(C_3)$ $M(C_3)$ $P(C_3)$ $M(C_3)$

^{*a*} The photoreactions were carried out with [1a-b or 2a-b] = 32 μ mol dm⁻³ and [3 or 4] = 2.4 mmol dm⁻³ in deaerated 90% ν/ν EtOH-H₂O at 25 °C. ^{*b*} In MeCN at 25 °C. SCE = standard calomel electrode. ^{*c*} In 80% ν/ν EtOH-H₂O. ^{*d*} In 50% ν/ν EtOH-H₂O. [*]*

Fig. 1 CD spectra of 1a-b, 2a-b, and Δ -[Ru(bpy)₃]²⁺ in EtOH

stage of the reaction (up to *ca.* 30% conversion); the accumulation of the unreacted enantiomer after *ca.* 30% conversion facilitated the reaction of the photocatalyst with the accumulated enantiomeric substrate so that pseudo-first-order kinetics were no longer observed. Among the helical photocatalysts tested (**1a-b** and **2a-b**), **1a** resulted in a maximum and reproducible enantiomer rate ratio (k^{Δ}/k^{Λ}) of 14.7 in 90% v/v EtOH-H₂O solvent, a value which decreased to 8.65 in 80% v/v EtOH-H₂O (Table 1).

It is also noteworthy from Table 1 that $M(C_3)$ -1a (or 2b) and rac-1a-b [viz., $M(C_3)$ -1a + $P(C_3)$ -1b] are oxidized or quenched predominantly by 3a (or 4a) possessing $P(C_3)$ helicity while $P(C_3)$ -2a reacts more easily with 3b having $M(C_3)$ helicity; in the case of $P(C_3)-\Delta$ -[Ru(bpy)₃]²⁺, $M(C_3)$ -**3b** is selected as the prevailing substrate. Thus, the molecular helicities of the present photocatalysts recognized those of the substrates in their preferential reactions between the different $P(C_3)$ and $M(C_3)$ configurations without any direct bonding interaction. In this novel 'photocatalytic shape recognition' reaction, the change in the molecular structures of the photocatalysts on photoactivation compared with those of their ground-states is negligible.[‡] The k^{Δ}/k^{Λ} values, which reflect the extent of the shape recognition reaction between the helical photocatalysts and substrates are much higher than those $(k_q \Delta / k_q \Delta)$ obtained from the quenching experiments, especially in the reduction of 3 by 1a. This is ascribed to the asymmetric formation of [Co(acac)₃] possessing the same helicity as that of the photocatalyst via oxidation of the photoreduction products $[Co(acac)_2(H_2O)_2-acac^-]$ by the Ru^{III} complexes generated from the Ru^{II} photocatalysts;¹² the

Fig. 2 The concentration change of 3 (\bigcirc), 3a (\triangle), 3b (\square), and Co(acac)₂(H₂O)₂ (\bigcirc), in the photoreduction of racemate 3 by 1a in 90% ν/ν EtOH-H₂O at 25 °C

predominant formation of $M(C_3)$ -3b from Co(acac)₂-(H₂O)₂-acac⁻ by the $M(C_3)$ -1a catalyst which reduces $P(C_3)$ -3a preferentially resulted in the accumulation of $M(C_3)$ -3b (Λ) and enhanced the k^{Δ}/k^{Λ} ratio up to 14.7 in 90% v/vEtOH-H₂O at 25 °C.

Received, 29th March 1993; Com. 3/01774E

References

- 1 G. B. Porter and R. H. Sparks, J. Chem. Soc., Chem. Commun., 1979, 1094.
- 2 G. B. Porter and R. H. Sparks, J. Photochem., 1980, 13, 123.
- 3 K. Ohkubo, T. Hamada, T. Inaoka and H. Ishida, Inorg. Chem.,
- 1989, 28, 2021.
 4 K. Ohkubo, H. Ishida, T. Hamada and T. Inaoka, *Chem. Lett.*, 1989, 1545.
- 5 H. Ishida, T. Hamada, Y. Fujishita, Y. Saito and K. Ohkubo, Bull. Chem. Soc. Jpn., 1993, 66, 714.
- 6 J. Van Houten and R. J. Watts, Inorg. Chem., 1979, 17, 3381.
- 7 C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan and J. K. Nagle, *J. Am. Chem. Soc.*, 1979, 101, 4815.
- 8 C. M. Elliott, R. A. Freitag and D. D. Blaney, J. Am. Chem. Soc., 1985, 107, 4647.
- 9 K. Ohkubo and K. Yamashita, Bull. Chem. Soc. Jpn., 1989, 62, 73; C. Tsiamis, S. Cambanis and C. Hadjikostas, Inorg. Chem., 1987, 26.
- 10 H. Ogino and K. Ogino, Inorg. Chem., 1983, 22, 2208.
- P. K. Mallick, D. P. Strommen and J. R. Kincaid, J. Am. Chem. Soc., 1990, 112, 1686.
 K. Ohkubo, T. Hamada and M. Watanabe, J. Chem. Soc., Chem.
- Commun., 1993, 1070.