Novel Enantioselective Photocatalysis by Chiral, Helical Ruthenium(i1) Complexes

Katsutoshi Ohkubo," Taisuke Hamada and Hitoshi lshida

Department of Applied Chemistry, Faculty *of* Engineering, Kumamoto University, Kumamoto 860, Japan

The enantioselective photoreduction of the helical substrates of $rac{[Co(acc)_3]}{(acc - 1)}$ (acac- = acetylacetonato) and rac-[Co(edta)]- (edta⁴⁻ = ethylenediaminetetraacetato) with the newly synthesized helical photocatalysts Δ - (or ra~)-[Ru[Menbpy)~z+ {Menbpy = 4,4'-bis[(l **R,2S,5R)-(-)-menthoxycarbonyl]-2,2'-bipyridine},** and **A-** (or **A)-[Ru{** (S or R)-PhEtb~y}~]2+ { (S or R)-PhEtbpy = 4,4'-bis[(S)-(-) or *(R)-(* +)-1 **-phenylethylaminocarbonyl]-2,2'-bipyridine}** was realized in the helical-shape recognition reaction with a maximum enantiomer rate ratio (k^{2/k²) of 14.7 in 90% v/v} EtOH-H20 at **25** "C.

The chemistry of molecular recognition has recently received considerable attention; molecular recognition in catalytic reactions is usually expected to occur as a result of efficient interaction (especially multipoint interactions) between chiral catalysts and enantiomeric (or prochiral) substrates. Thus, non-bonding long-range interactions between chiral photocatalysts and substrates would not result in efficient enantioselectivity or asymmetric induction. Porter *et al.*^{1,2} studied the enantioselective reduction of rac- $[Co(acac)_3]$ (acac- = acetylacetonato) catalysed by the photoactivated Δ -[Ru(bpy)₃]²⁺ (bpy = $2,2'$ -bipyridine). This investigation, however, did not result in efficient photocatalysis by Δ -[Ru(bpy)₃]²⁺, because Δ -[Ru(bpy)₃]²⁺ racemizes easily, leading to low enantioselectivity (enantiomer rate ratio $k^{\Lambda}/k^{\Delta} = 1.08$). We report here novel enantioselective photocatalysis by helical ruthenium (II) complexes, Δ -[Ru(Menbpy)₃]²⁺ **la** or rac-[Ru(Menbpy)₃]²⁺ **la-b** ${Menby = 4,4'-bis[(1R,2S,5R)-(-)}$ -menthoxycar- $\mathbf{A} = \mathbf{b} \quad \text{where } \mathbf{b}$
bonyl]-2,2'-bipyridine}, Λ -[Ru(S-PhEtbpy)₃]²⁺ **2a** or Δ -[Ru(R-PhEtbpy)₃]²⁺ **2b** $\{(S)$ or R)-PhEtbpy = 4,4'-bis[(S)-(-) or *(R)-(* +)- 1-phenyle **thylaminocarbonyl]-2,2'-bipyr**idine), in the reduction of rac-[Co(acac)₃] **3 (3a** = Δ , **3b** = Λ ; acac⁻ = acetylacetonato) or rac-[Co(edta)]⁻ **4 (4a** = Δ , **4b** = Λ ; $edta^{4-} = ethylene diameterraacetato)$.

The ruthenium (n) photocatalysts were prepared by the

method described in our previous reports,^{3,4} and the helical catalysts **la, 2a** and **2b)** were obtained by resolution of their racemates using silica gel column chromatography (eluent: CHC13-MeOH) . The characteristic molecular symmetries of **la-b** and **2a-b**

are reflected in their CD spectra (in EtOH) shown in Fig. 1; **la** and 2b have the same Δ -symmetry as Δ -[Ru(bpy)₃]²⁺, while **2a** shows A-symmetry, and **la-b** {racemate of **la** and Λ -[Ru(Menbpy)₃]²⁺ **1b**} indicates the predominance of the A-symmetry of **la** rather than the A-symmetry of **lb.** From the energy minimized conformations [determined by molecular mechanics (MM2) calculations] of their chiral ligands,⁵ 1a and **2b** were found to adopt $M(C_3)$ helicity while **1b** and **2a** have $P(C_3)$ helicity, where $P(C_3)$ or $M(C_3)$ indicates a plus (clockwise) or minus (counterclockwise) helical arrangement along the C_3 axis, respectively.

The helical complexes of **la-b** and **2a-b,** which have the metal to ligand charge transfer absorption at $\lambda_{\text{max}}(\epsilon) = 466 \text{ nm}$
(27 200 mol⁻¹ dm⁻³ cm⁻¹) and 464 nm (21 200 mol⁻¹ dm³ cm-1) in EtOH, respectively, were more stable to light and had longer lifetimes (τ) than Δ -[Ru(bpy)₃]²⁺; the observed values of **t** (1550 ns for **la-b** and 1800 ns for **2a-b** in EtOH at 25 °C) and quantum yield of photoracemization $(\phi_{\text{rac}} = 4.0 \times$ 10-6 for **la** and 7.6 **x** 10-6 for **2a** or **b** in EtOH at 25 "C) were respectively much larger and smaller than those $(\tau = 790 \text{ ns in}$ H₂O at 25 °C⁶ and $\bar{\phi}_{\text{rac}} = 2.88 \times 10^{-4}$ in EtOH at 25 °C²)

for Δ -[Ru(bpy)₃]²⁺. The excited-state oxidation potentials *(E3+/2+** in Table 1) determined for **la-b** and **2a-b** by using the Rehm-Weller relation7 were lower than that of Δ -[Ru(bpy)₃]²⁺ because of the esterification or amidation of the bipyridine ligands.8

The photoreduction of **2.4** mmol dm-3 racemic **3** or **4** $(E^{3+/2+} = -0.349$ or 0.13^{10} V *vs.* SCE for 3 or 4, respectively) by 32 μ mol dm⁻³ **la-b** or **2a-b** under photoirradiation (λ) 400 nm, 500 W xenon lamp) in deaerated aqueous EtOH solution at 25 °C produced only $Co(acoc)₂(H₂O)₂$ -acac- or [Co(edta)]2- as reduction product and proceeded catalytically and enantioselectively (Fig. 2); in this reaction, the EtOH solvent contributes to the photocatalysis of **la-b** or **2a-b** as a reductant, as shown in Scheme 1.

The reaction rates were followed by monitoring spectrophotometrically the amounts of 3a-b or 4a-b consumed,[†] and were found to obey a pseudo-first-order rate law with different pseudo-first-order rate constants $(k^{\Delta}$ and $k^{\Delta})$ during the initial

T The total concentration $\{3a \text{ (or 4a)}\} + [3b \text{ (or 4b)}]\}$ and the [†] The total concentration {[3a (or **4a**)] + [3b (or **4b**)]} and the concentration difference {[3a (or **4a**)] – [3b (or **4b**)]} were deter-
mined respectively by using $\epsilon = 133$ (347) mol⁻¹ dm³ cm⁻¹ at $\lambda_{\text{max}} =$ 595 (533) nm for **3a-b** (4a-b) and $\Delta \varepsilon = -8.11$ (3a) and $+8.11$ (3b) mol⁻¹ dm³ cm⁻¹ at $\lambda_{CD} = 574$ nm and $+1.73$ (4a) and -1.73 (4b) at $\lambda_{CD} = 585$ nm.

Table 1 Photoreduction of the helical 3 or 4 racemates with the helical photocatalysts 1a-b and 2a-b^a

Photocatalyst		$F^{3/2+*}$ / Substrate V vs. SCE ^b $10^2 \phi_{\text{react}}$	Reaction					Quenching			
				k^{Δ} 10^{-6} s ⁻¹	k^{\wedge} 10^{-6} s ⁻¹	k^{Δ}/k^{Λ}	Prevailed k_{α}^{Δ} / helicity	10^8 s ⁻¹	$k_{\rm g}$ γ $10^8 s^{-1}$	$k_{\rm o}^{\rm A}$ / k_a^{Λ}	Prevailed helicity
$M(C_3)$ -1a		-0.45	1.3	74.0 239c	5.0 28.0c	14.7 8.65c	$P(C_3)$ $P(C_3)$	1.98	1.49	1.28	$P(C_3)$
1a-b $= M(C_3)$ -1a $+P(C_3)$ -1b] $P(C_3)$ -2a $M(C_3)$ -2b $P(C_3)$ - Δ -[Ru(bpy) ₃] ²⁺ 3	3 4	-0.45 -0.45 -0.60 -0.60 -0.81	1.8 0.02 ^d 0.84 0.15 ^e 48	117 0.55d 31.5 4.13e	67 0.29 ^d 48 2.66e	1.67 1.90 ^d 1/1.51 1.54e 1/1.08 ^h	$P(C_3)$ $P(C_3)$ $M(C_3)$ $P(C_3)$ $M(C_3)$	1.57 156^{d} 1.44 1.69	1.41 110^{d} 1.67 1.57	1.14 1.42 ^d 1/1.16 1.08 1/1.038	$P(C_3)$ $P(C_3)$ $M(C_3)$ $P(C_3)$ $M(C_3)$

^{*a*} The photoreactions were carried out with [1a-b or 2a-b] = 32 μ mol dm⁻³ and [3 or 4] = 2.4 mmol dm⁻³ in deaerated 90% v/v EtOH-H₂O at 25 °C. ^b In MeCN at 25 °C. SCE = standard calomel electrode. c In 80% v/v EtOH-H₂O. ^d In 50% v/v EtOH-H₂O. ϵ In 97% v/v EtOH-H₂O. f Ref. 7. 8 In H₂O, see ref. 2. h Ref. 1.

Fig. 1 CD spectra of 1a-b, 2a-b, and Δ -[Ru(bpy)₃]²⁺ in EtOH

stage of the reaction (up to ca . 30% conversion); the accumulation of the unreacted enantiomer after ca. 30% conversion facilitated the reaction of the photocatalyst with the accumulated enantiomeric substrate so that pseudo-firstorder kinetics were no longer observed. Among the helical photocatalysts tested (1a-b and 2a-b), 1a resulted in a maximum and reproducible enantiomer rate ratio (k^{Δ}/k^{Δ}) of 14.7 in 90% v/v EtOH-H₂O solvent, a value which decreased to 8.65 in 80% v/v EtOH-H₂O (Table 1).

It is also noteworthy from Table 1 that $M(C_3)$ -la (or 2b) and rac-1a-b [viz., $M(C_3)$ -1a + $P(C_3)$ -1b] are oxidized or quenched predominantly by 3a (or 4a) possessing $P(C_3)$ helicity while $P(C_3)$ -2a reacts more easily with 3b having $M(C_3)$ helicity; in the case of $P(C_3)$ - Δ -[Ru(bpy)₃]²⁺, $M(C_3)$ -3b is selected as the prevailing substrate. Thus, the molecular helicities of the present photocatalysts recognized those of the substrates in their preferential reactions between the different $P(C_3)$ and $M(C_3)$ configurations without any direct bonding interaction. In this novel 'photocatalytic shape recognition' reaction, the change in the molecular structures of the photocatalysts on photoactivation compared with those of their ground-states is negligible.# The k^{Δ}/k^{Δ} values, which reflect the extent of the shape recognition reaction between the helical photocatalysts and substrates are much higher than those $(k_q^{\Delta}/k_q^{\Delta})$ obtained from the quenching experiments, especially in the reduction of 3 by 1a. This is ascribed to the asymmetric formation of $[Co(acac)₃]$ possessing the same helicity as that of the photocatalyst via oxidation of the photoreduction products $[Co(acac)₂(H₂O)₂-acac-]$ by the Ru^{III} complexes generated from the Ru^{II} photocatalysts;¹² the

Fig. 2 The concentration change of 3 (O), 3a (\triangle), 3b (\square), and $Co(\text{acac})_2(H_2O)_2$ (.), in the photoreduction of racemate 3 by 1a in 90% v/v EtOH-H₂O at 25 °C

predominant formation of $M(C_3)$ -3b from Co(acac)₂- $(H_2O)_2$ -acac- by the $M(C_3)$ -la catalyst which reduces $P(C_3)$ -**3a** preferentially resulted in the accumulation of $M(C_3)$ -3b (Λ) and enhanced the k^{Δ}/k^{Δ} ratio up to 14.7 in 90% v/v EtOH-H₂O at 25 °C.

Received, 29th March 1993; Com. 3/01774E

References

- 1 G. B. Porter and R. H. Sparks, J. Chem. Soc., Chem. Commun., 1979, 1094.
- 2 G. B. Porter and R. H. Sparks, J. Photochem., 1980, 13, 123.
- K. Ohkubo, T. Hamada, T. Inaoka and H. Ishida, Inorg. Chem., 3
- 1989, 28, 2021. 4 K. Ohkubo, H. Ishida, T. Hamada and T. Inaoka, Chem. Lett., 1989, 1545.
- 5 H. Ishida, T. Hamada, Y. Fujishita, Y. Saito and K. Ohkubo, Bull. Chem. Soc. Jpn., 1993, 66, 714.
- 6 J. Van Houten and R. J. Watts, Inorg. Chem., 1979, 17, 3381.
- C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan and J. K. Nagle, J. Am. Chem. Soc., 1979, 101.4815.
- 8 C. M. Elliott, R. A. Freitag and D. D. Blaney, J. Am. Chem. Soc., 1985, 107, 4647.
- K. Ohkubo and K. Yamashita, Bull. Chem. Soc. Jpn., 1989, 62, 9 73; C. Tsiamis, S. Cambanis and C. Hadjikostas, Inorg. Chem., 1987, 26.
- 10 H. Ogino and K. Ogino, *Inorg. Chem.*, 1983, 22, 2208.
- 11 P. K. Mallick, D. P. Strommen and J. R. Kincaid, J. Am. Chem. Soc., 1990, 112, 1686.
- 12 K. Ohkubo, T. Hamada and M. Watanabe, J. Chem. Soc., Chem. Commun., 1993, 1070.